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Abstract
Using time-dependent tight-binding simulations of radiation damage cascades in a model metal
we directly investigate the nature of the excitations of a system of quantum mechanical
electrons in response to the motion of a set of classical ions. We furthermore investigate the
effect of these excitations on the attractive electronic forces between the ions. We find that the
electronic excitations are well described by a Fermi–Dirac distribution at some elevated
temperature, even in the absence of the direct electron–electron interactions that would be
required in order to thermalize a non-equilibrium distribution. We explain this result in terms of
the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic
force into four well-defined components within the basis of instantaneous electronic
eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds
is mostly (95%) accounted for by a thermal model for the electronic excitations. This result
justifies the use of the simplifying assumption of a thermalized electron system in simulations
of radiation damage with an electronic temperature dependence and in the development of
temperature-dependent classical potentials.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Metals under fast neutron bombardment suffer damage at the
atomic scale as a result of collision cascades. A neutron
impinging on the surface transfers kinetic energy to a metal
ion (the primary knock-on atom or PKA) and this ion
goes on to collide with others, creating a highly disordered
region known as a displacement spike [1]. Relaxation of
the displacement spike results in a residual population of
interstitial and vacancy defects, which influences the long-
term microstructural evolution of the metal. Because the
evolution of a collision cascade takes place on experimentally
inaccessible picosecond timescales, simulation has been the
primary means for establishing the damage produced in
metals subjected to neutron bombardment. Most dynamical
simulations over the last decade have employed classical
molecular dynamics (MD) [2] and have thus treated the
electrons of the target material only implicitly within some
model for the interionic potential. It is expected that the
electrons should, in fact, play an important role in the dynamics

of radiation damage and several attempts have been made to
incorporate their effects. Finnis et al [3], Nordlund et al [4]
and Caro and Victoria [5] have all introduced a drag force
into the ionic dynamics to account for energy loss to the
electrons. Duffy and Rutherford [6] include a model of the
electrons as a diffusive heatbath, exchanging energy with the
underlying atomic subsystem via drag and stochastic forces. In
the present paper we discuss the use of a model which goes
beyond such phenomenological approaches by including the
effect of electrons through explicit treatment of their dynamics.

We are applying semi-classical Ehrenfest dynamics [7] to
a simple s-band tight-binding model of a metal [8] to simulate
the evolution of a system of classical ions under the influence
of forces due to electrons treated quantum mechanically. In
turn the electrons, represented as a single-particle density
matrix, are evolved under a tight-binding Hamiltonian that is
parameterized by the positions of the ions. Details of our
method can be found in [9] and [10]. Using our model we
are able to explore the effect of energy transfer from ions to
electrons on the development of a collision cascade.
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The interionic forces in classical MD simulations
implicitly assume the validity of the Born–Oppenheimer
approximation. In contrast, the explicitly included electrons
in our simulations have a finite response time to ionic motion
(i.e. to changes in the electronic Hamiltonian) and we are able
to monitor any effect that this has on the electronic forces
between ions. We can identify two such possible effects. First,
the finite response time of the electron density to movement
of the ions may give rise to a non-conservative, non-adiabatic
force on the ions. Models incorporating a classical drag force
are attempting to capture this effect [3, 4, 6]. Second, as a
collision cascade progresses, excitations will accumulate in the
electronic system and may give rise to changes in the assumed
conservative electronic forces between ions.

We have already begun to investigate the first of these
effects [9] and have considered the validity of representing the
energy loss to electrons via a drag term [10]. In this paper
we will investigate the magnitude of the second effect and
determine to what extent electronic excitation will alter the
strength of interionic forces in collision cascades. By carrying
out cascade simulations in which the dynamics of electrons are
explicitly treated, we are able to assess the validity of the Born–
Oppenheimer assumption implicit in the interatomic potentials
used in classical MD simulations.

In section 2 we discuss a set of tight-binding simulations
carried out with Ehrenfest dynamics and the results obtained.
In section 3 we discuss the nature of the electronic excitations
and consider ways to extrapolate our results beyond regimes
accessible by direct simulation. In section 4 we offer our
conclusions about the implications of the current work.

2. Investigation of electronic forces using Ehrenfest
dynamics

2.1. A simple tight-binding model

We gather representative data on the electronic forces by
simulating a series of collision cascades in our tight-binding
model parameterized for copper [8]. We use the simplest
possible electronic Hamiltonian, Ĥ , given in the basis of
atomic orbitals as

HI J = γ (|RI − RJ |), (1)

where I and J label non-overlapping s-orbitals centred on ions
at positions RI and RJ , respectively. The hopping parameters
γ vary as an inverse power of the interionic separation and are
truncated between the ideal second and third nearest neighbour
separations. The onsite elements of Ĥ are set to zero1. The
electrons are represented as a single-particle density operator
ρ̂, and the ions also experience a pairwise repulsive force
varying as an inverse power of their separation.

The electronic density operator is initialized according to
a Fermi–Dirac distribution f (ε; T ) at a temperature of T (0) =
300 K. We write such a density operator as

ρ̂(0) =
∑

i

f (εi (0); T (0)) |φi(0)〉 〈φi (0)|, (2)

1 As in [9] we find that including a self-consistent diagonal Hamiltonian
matrix element of Hubbard U form has very little effect; the interionic charge
transfers are in any case small (typically ∼0.01e).

where |φi(0)〉 is an eigenstate of the electronic Hamiltonian
at time t = 0 and of energy εi (0). This density operator is
evolved according to the quantum Liouville equation

ih̄
∂

∂ t
ρ̂(t) =

[
Ĥ(R; t), ρ̂(t)

]
, (3)

where the electronic Hamiltonian Ĥ (R; t) has an implicit
time-dependence through its parameterization in terms of the
ionic coordinates {RI (t)}, which from now on will be written
collectively as R. This evolution of the density operator is
equivalent to the time-dependent Schrödinger equation for the
evolution of the wavefunction. The classical ions are evolved
under the pairwise repulsive force and an attractive electronic
force depending on the density operator and the gradient of the
electronic Hamiltonian with respect to the ionic positions. This
electronic force will be

F = −Tr (ρ̂ ∇ Ĥ), (4)

where the gradient operator acts on the ionic positions.

2.2. The electronic force

We can gain insight into the electronic force by considering
the time-evolved density operator ρ̂(t) of equation (3) in the
basis of instantaneous eigenstates of the Hamiltonian at time
t . Writing these eigenstates as {|φi(R; t)〉} with eigenvalues
{εi(R; t)} we have

ρ̂(t) =
∑

i, j

|φi (R; t)〉ρi j(t) 〈φ j (R; t)| (5)

which defines the matrix elements ρi j(t). In this basis,
equation (4) becomes

F(t) = −
∑

i

ρii (t)∇εi(R; t)

−
∑

i, j,i �= j

(εi(R; t) − ε j(R; t))ρi j(t) 〈φ j (R; t)|∇φi (R; t)〉.

(6)

The first term represents the motion of the ions on a collection
of potential energy surfaces of the eigenvalues weighted
according to the diagonal elements ρii . The second term
represents the effect of non-adiabaticity, where the matrix
elements 〈φ j (R; t)|∇φi(R; t)〉 are known as the non-adiabatic
coupling vectors [11]. The diagonal elements ρi i contain
information about the excitations that accumulate in the
electronic system as a result of the ionic motion. We can
separate out these excitations by considering the form that
the density operator would take if the ions had traversed their
trajectories infinitely slowly. Because the lack of symmetry
in our Hamiltonian will eliminate crossings and accidental
degeneracies of the eigenstates, adiabatic evolution will take
an initial eigenstate of the Hamiltonian into the corresponding
eigenstate (in an energy ordered list) at a later time t . We
can therefore write the adiabatic density operator by holding
the occupations of the eigenstates fixed at their initial values,
ρii (t = 0). For our chosen initialization we have

ρ̂0(R; t) =
∑

i

|φi(R; t)〉 f (εi(0); T (0)) 〈φi(R; t)|. (7)

2
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Experiment suggests that an excited electronic system
should thermalize to a well defined temperature on a timescale
of ∼10–100 fs [12]. Anticipating that the excited density
matrix elements ρi i (t) will have an approximately thermal
character, we can define a third density operator in which
the eigenvalues are occupied according to a characteristic
temperature T (t):

ρ̂T (R; t) =
∑

i

|φi(R; t)〉 f (εi(R; t); T (t)) 〈φi (R; t)|. (8)

We quantify the error involved in making this approximation
later. Separating out the various components of the density
operator as ρ̂ = ρ̂0 + (ρ̂T − ρ̂0) + (ρ̂ − ρ̂T ) allows us to
rewrite the electronic force in equation (6) as

F = −
∑

i

f (εi(0); T (0))∇εi(R; t)

−
∑

i

{ f (εi(R; t); T (t)) − f (εi(0); T (0))}∇εi(R; t)

−
∑

i

{ρi i (t) − f (εi(R; t); T (t))} ∇εi(R; t)

−
∑

i, j,i �= j

(εi(R; t) − ε j(R; t))ρi j(t)〈φ j (R; t)|∇φi (R; t)〉.

(9)

For convenience we will refer to the four sum terms in
equation (9) as f1, f2, f3 and f4 respectively. f1 is the adiabatic
force that would be exerted on the ions if they had followed
their trajectories infinitely slowly. f2 represents the effect of
excitations characterized by a temperature T (t) and f3 is a
correction to those excitations due to the occupations of the
eigenstates at time t not being exactly thermally distributed.
Their sum, f2 + f3, gives the total effect of accumulated
electronic excitations on the conservative forces. By contrast,
f4 is a dynamic term, giving the non-conservative contribution
due to the finite response time of the density matrix to ionic
motion. Simulations of radiation damage cascades using MD
incorporating a drag force on the ions can be viewed as
attempts to incorporate the effects of f4.

As a cascade evolves, the work done by the force f4 will
appear as excitations in the density matrix, in the quantities
ρii − ρ0

i i . The forces f1, f2 and f3 are conservative when these
excitations are taken into account. We can measure the size
of this non-adiabatic energy transfer from ions to electrons by
considering the excess of energy in the system with the time-
evolved density matrix compared with the adiabatic density
matrix ρ̂0. We write this as

�E = Tr
(
(ρ̂ − ρ̂0)Ĥ

)
. (10)

As more and more energy enters the electronic system, the
bonding interactions will be reduced and we should see an
increasingly repulsive interaction between ions. This force,
f2 + f3, is absent in the case of classical MD simulations
in which the interaction potential remains constant for the
duration of the cascade. It is an aim of the current work to
quantify the effect of this omission.

2.3. Simulations results

We have generated cascade data, including electronic
excitations and forces, for a set of forty-four simulations with
the initial PKA direction evenly distributed over the irreducible
solid angle of 4π/48 steradians associated with the fcc unit
cell [13]. In each case, a simulation cell of 2016 atoms
(9 × 7 × 8 face-centred cubic (fcc) unit cells) with periodic
boundary conditions is set up and allowed to thermalize to an
ionic temperature of 300 K over 1 ps of classical MD with a
Sutton–Chen potential [14] and 100 fs of Born–Oppenheimer
dynamics under the tight-binding Hamiltonian. The density
operator is initialized to an electronic temperature of 300 K.
We then impart 2 keV of kinetic energy to one ion, our PKA,
in a particular direction and allow the system to evolve under
Ehrenfest dynamics. The simulations are allowed to run for
225 fs,2 with a timestep of 0.01 fs. In a typical simulation the
total energy transfer to the electrons will be around 45 eV, or
22 meV per electron. Over 75% of the ions will have been
displaced by more than 0.5 Å from their perfect lattice sites
at some point during the cascade and the cascades overlap the
periodic boundaries.

We compute a double histogram as the simulations
progress, in which each atom pair is binned according
to the spacing and the bond-order between the ions.
We then determine the average electronic bond force (a
product of the bond-order and the gradient of the hopping
parameter) corresponding to the midpoint of each histogram
bin. Generating these histograms at intervals throughout the
simulation for the three density matrices defined above allows
us to determine the effect of electronic excitation on the
components of the electronic force in equation (9) within the
simulation cell.

By averaging the bond-order data from the histogram
output over all atom pairs with a given separation and over
all simulations we can obtain an ensemble averaged electronic
bond force as a function of separation (indicated below by
angle brackets). Figure 1 shows these force curves for the
mean excited electronic force, 〈|F|〉 = 〈|f1 + f2 + f3 + f4|〉
(calculated using ρ̂), for the point in the simulations at which
�E ≈ 43 eV. Also shown is the reduction in the mean
attractive electronic force, (〈|f1|〉−〈|F|〉)/〈|f1|〉, where 〈|f1|〉 is
the mean adiabatic force (calculated using ρ̂0). There is a clear
weakening of bonds, but the effect is small (about 0.4%) for
the degree of electronic excitation achieved in these cascades.

3. Extrapolating the results

3.1. A thermal model for the electronic excitations

The computational constraints on the size and duration of
the cascades that we can simulate place a low limit on
the amount of energy that we can inject into the electronic
system by direct simulation. The 2 keV of kinetic energy
in the cascades considered is low; we would expect PKA
energies of several tens of kilo electron volt to be more
typical. We therefore seek a valid means of extrapolating

2 Such a simulation, including the thermalization, typically takes 72 h on a
2.66 GHz processor.
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Figure 1. The strength of the attractive electronic force between ion
pairs as a function of the interionic separation. The data are shown
for the time-evolved density operator corresponding to
〈|f1 + f2 + f3 + f4|〉 (crosses). Data for the adiabatic density operator
corresponding to 〈|f1|〉 are indistinguishable from these at this scale.
Variations in the local atomic environments give a spread in the force
at a given separation and the error bars show the standard deviation
of this spread. The right-hand vertical axis shows the expectation of
the percentage difference between the two forces (circles).

our results to higher electronic excitations. Figure 2 shows
a plot of the occupation of the instantaneous eigenstates
after 225 fs of a typical simulation (i.e. a plot of ρii ≡
〈φi (r; t)|ρ̂(t)|φi (r; t)〉 as a function of εi (r; t)) and we can see
that the occupancy function looks thermal with a temperature
of 6055 ± 48 K. The fact that the excited electrons appear
to have a thermal distribution suggests a convenient means
of extrapolating the degree of excitation—by simply further
heating the electrons.

At first sight this result is surprising. Our simulations
do not incorporate the direct electron–electron interactions
that would allow a non-equilibrium distribution of electrons
to thermalize. The excitations occurring during the cascade
must therefore directly yield a thermal distribution at an
elevated temperature. This makes sense if the final distribution
is viewed as the cumulative result of many excitations, all
small on the scale of 2kBT , the width of the Fermi–Dirac
function, where T is the final electronic temperature. If all
the electronic excitations are small jumps, the evolution of
the occupancy function will be a one-dimensional diffusion
in energy space and it is the similarity of the solution of the
diffusion equation where the initial condition is a step function
(namely the complementary error function) to the Fermi–Dirac
function which maintains a thermal-looking distribution of the
electrons.

We can estimate an upper kinetic energy bound for the
ions to produce a thermal-looking electronic distribution as
follows: if we consider the characteristic frequency of an ion
moving with speed v to be ω = 2πv/b where b is some
typical impact parameter (say the nearest neighbour distance)
and associate a transition energy h̄ω with the ionic motion then
we can calculate the condition on the ion kinetic energy for a
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Figure 2. The population of the instantaneous eigenstates for a
typical simulation after 225 fs, when the cascade region fills the
simulation volume. A Fermi–Dirac distribution corresponding to the
original temperature of 300 K is shown, along with a Fermi–Dirac
function corresponding to a temperature of 6055 K as a best fit to the
excited occupation distribution.

given electronic temperature, corresponding to h̄ω � kBT :

K � M

2

(
kBT b

2π h̄

)2

, (11)

where M is the ion mass. For our copper ions, with b = 2.6 Å,
a temperature of 5000 K corresponds to a condition on the ion
kinetic energy of K � 233 eV. This seems small compared to
the initial 2 keV, but this kinetic energy will be rapidly shared
amongst several hundred ions and we expect the condition for
diffusive evolution of the occupancy function to be satisfied
during the simulation, except for the first few collisions.

We can test the assertion that the excited electronic
distribution is thermal by attempting to fit a Fermi–Dirac
distribution to our simulation data. This is most easily
accomplished using a simple linear regression of ln(1/ρii − 1)

against εi − μ for each set of occupations, where ρii is the
fractional occupancy of the eigenstate of energy εi . μ is the
chemical potential corresponding to the fitted temperature and
satisfying the condition that the system is neutral. The gradient
of the regression line will be 1/kBT . The temperature fitting
algorithm used is described in more detail in the appendix.
Figure 3 shows the fitted temperatures for our set of forty-four
2 keV simulations every 10 fs (a total of 1012 datapoints). R2

measures of the goodness of fit for the regression are typically
around 0.95 and the fitted temperatures show very good
agreement between simulations, suggesting that the energy
transfer is well described by thermal distributions. There is
also good agreement with the theoretical curve for an electronic
heat capacity based on the Sommerfeld expansion for the free
electron gas [15]3, lending further support for the thermal
model.

In the early stages of each simulation, an insufficient
number of electronic excitations will have occurred for a good

3 cv = (π2/3)k2
BT g(εF), where g(εF) is the density of states at the Fermi

level. We expect the free electron result to be valid for our tight-binding model
because it has a low band-filling and a nearly spherical Fermi surface.

4
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Figure 3. Plot of �E (equation (10)) against fitted temperature for
forty-four 2 keV simulations. The solid line indicates the theoretical
curve for the electronic heat capacity based on the Sommerfeld
expansion. The deviation from the theoretical line is discussed in the
main text. The fitting algorithm is described in the appendix.

thermal distribution to have been established. Therefore the fit
to the theoretical curve at low excitation is less good, although
the deviation is similar across all simulations. After just 5 fs
the small number of excitations is sufficient only to disrupt
the initial Fermi–Dirac distribution and the temperature fitting
algorithm fails to generate a temperature in 55% of cases. By
15 fs a satisfactory fit is always achieved.

Excitations created by ionic motion will initially be
spatially localized, spreading on a timescale set by the
electronic thermal conductivity. In an N atom system this
spreading takes place on a timescale of order N1/3γ /h and the
excitations can be considered to be delocalized over the whole
volume within ∼6 fs. Future simulations with larger systems
may show an effective temperature gradient around the cascade
region.

Figure 1 showed the effect of electronic excitation on the
average interionic force as function of pairwise separation.
By fitting a temperature to the excited electron distributions
in our simulations, we can construct ρ̂T (R; t) and compare
the contributions f2 through to f4 to the force between pairs
of ions. Figure 4 shows that the majority (∼95%) of the
effect of electronic excitation on the pairwise force is captured
by the thermal model in the component f2, the effect of the
residual excitations in the full density matrix (which give
rise to f3) being small. It should be noted that whilst the
dynamic term f4 contributes little when averaged over pairwise
interactions (because its direction is not correlated with the
bonds), its magnitude is significant when considered on an
atom by atom basis. |f4| for a given atom will tend to scale
with the ionic velocity [10], whereas |f2| will scale with the
degree of electronic excitation. We would therefore expect
that on average |f2| will grow from zero over the course of the
simulation, whereas |f4| will depend on the distribution of ion
velocities. Towards the end of our 225 fs simulations the two
components have similar orders of magnitude.

Figure 4. The reduction in the mean attractive electronic force as a
function of pairwise separation due to the neglect of the various
components of the electronic force defined in section 2: the effect of
thermal excitations, 〈|f1 + f2|〉 − 〈|f1|〉 (vertical crosses), the effect of
excitations not captured by the thermal model,
〈|f1 + f2 + f3|〉 − 〈|f1 + f2|〉 (diagonal crosses) and the effect of the
non-conservative forces, 〈|f1 + f2 + f3 + f4|〉 − 〈|f1 + f2 + f3|〉
(circles).

Figure 5. Extrapolation of the effect of electronic excitation on the
attractive electronic force. Three methods of extrapolation are
shown: (1) imposing the elevated temperature given on the horizontal
axis on ionic configurations taken from the initial simulations
(crosses). (2) The results of further dynamical simulations at higher
PKA energies up to 50 keV (boxes). (3) Calculations based on the
effect of electronic temperature on the bond orders in a perfect
crystal (circles).

3.2. High temperature results

Given that a thermal model captures well the effect of
electronic excitations on the interionic forces we can
extrapolate our simulation results by elevating the electronic
temperature and recalculating the forces. Figure 5 shows the
reduction in the attractive electronic force as a function of
electronic temperature calculated in three different ways.

We first take the ionic positions from the end of each of
our set of 44 simulations and impose an elevated electronic
temperature. The simulation results are simply used to provide

5
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a sample of distorted ionic configurations for which we can
examine the various contributions to the electronic forces and
these points are not therefore representative of simulations
which might reach such a high temperature.

Second, we carry out further sets of simulations at higher
PKA energies of 5, 20 and 50 keV and calculate the forces. At
these higher energies the cascade front will cross the periodic
boundaries of the simulation cell very early on, but we can once
again view the simulation merely as a means of generating
distorted ionic configurations.

As a third method of extrapolating our results, we consider
the effect of an elevated electronic temperature on the nearest
and next-nearest neighbour bond-orders within our tight-
binding model in a perfect lattice. In a real cascade the region
of electronic excitation will extend far beyond the cascade
front, due to the high electronic thermal conductivity. We
would therefore expect electronic excitations to affect a region
of undistorted lattice surrounding the cascade.

The data for the three methods of extrapolation lie on the
same curve and we can see that significant reductions of the
attractive electronic force of order 10% would occur at high
electronic temperatures of 3 × 104 K.

4. Conclusions and discussion

A set of simulations of radiation damage cascades using
Ehrenfest dynamics in a tight-binding model of copper allows
us to calculate the effect of electronic excitations on the
attractive forces between ions. We find that the excitations
themselves are well described by a Fermi–Dirac distribution
at some elevated temperature and that this best-fit temperature
coincides well with that calculated from the total non-adiabatic
energy transfer using the Sommerfeld form for the electronic
heat capacity. A decomposition of the electronic force in the
basis of instantaneous electronic eigenstates (see equation (9))
demonstrates that a thermal model also captures over 95% of
the reduction in the attractive electronic force due to the full
spectrum of excitations. Extrapolating our results to higher
electronic temperatures predicts the effect of higher levels of
electronic excitation on the electronic forces between ions.

The significance of our results depends on the electronic
temperatures developed in real cascades. Whilst such cascades
will typically involve PKA energies of several tens of kilo
electron volts, we note that our simulation and extrapolated
results are all derived under periodic boundaries in a small
cell. In reality, the energy injected into the electrons by
the ionic motion would be rapidly dispersed due to the high
electronic thermal conductivity. The balance between the rate
of energy injection by the cascade and the dispersion of the
energy within the electron gas will determine the electronic
temperature distribution as a function of time and hence the
extent to which the electronic forces are modified.

Duffy et al [16, 17] have developed a model combining
a classical MD simulation of ionic evolution with a model of
electrons as an inhomogeneous heatbath evolving according
to the heat diffusion equation. This model allows them to
determine the spatial distribution of electronic temperature
during simulations of collision cascades. In [17] they find
maximum electronic temperatures of up to 7000 K in 10 keV

cascades. Their results are highly sensitive to the assumed
coupling between ions and electrons in the model and literature
estimates for this parameter [3, 18, 19] vary by several orders
of magnitude.

One way to include the effects of electronic excitation
on conservative forces in a classical molecular dynamics
simulation, in which all the interactions are described by
a potential, would be to make that potential dependent
on the local electronic temperature. Given the lack
of an unambiguous estimate for the maximum electronic
temperature attained in real radiation damage cascades in
metals, the need for such a potential remains an open question.
If cascades are able to cause a rise in temperature to above
104 K then it is possible that the effect on the interionic forces
(a reduction in the electronic attractive force of over 1%) would
cause a significant change to the ion dynamics. Furthermore, in
higher energy events such as ion implantation by channelling,
we might expect still higher electronic temperatures to be
attained [16] and the need for a temperature-dependent force
model is increased correspondingly.

Even in situations where electronic temperatures reach
only 5000 K, as in our 2 keV simulations, we might need
to take account of the reduction in the attractive electronic
force. A region surrounding the collision cascade and bathed
in the excited electron gas will experience reduced bonding
interactions between ions and can be regarded as an inclusion
under compressive stress. An apparently small decrease in the
bonding interaction of ∼0.4% implies a significant effective
volume strain of ∼0.2% on the inclusion. A strain of this
magnitude, whilst short-lived, could give rise to an outward
propagating elastic wave, which might need to be taken
into account when considering the evolution of the damage
distribution.

Development of a potential with a dependence on
electronic excitation is greatly simplified if a Fermi–Dirac
distribution can be assumed (see [20] for an example). Whilst
in real cascades electron–electron interactions will drive the
excitations towards a thermal distribution, the timescale for
this thermalization (10–100 fs) is comparable to the timescale
of the cascade evolution. These simple considerations do
not lead us to expect the assumption of a well established
electronic temperature to be valid. However, our simulations
demonstrate that even in the absence of direct electron–
electron interactions, the nature of the excited electronic
spectrum is well modelled by a thermal distribution, because
the characteristic frequencies of the ionic motion are small
on the scale of kBT . The need for thermalization of
strongly non-equilibrium electronic excitations never arises
and the simplifying assumption of a well established electronic
temperature may thus be made.
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Figure A.1. A sample temperature fit to the eigenvalue occupations
100 fs into a 2 keV simulation. In this case the best fit is achieved by
exploiting the largest fitting window allowed by our algorithm. The
excluded data points in the non-linear tails are shown as (blue)
vertical crosses. The 174 data points included in the fit are shown as
(red) diagonal crosses. The best-fit temperature line
(T = 4429 ± 40 K, μ(T ) = −3.116 eV) is shown by the diagonal
(purple) line.

Appendix. Temperature fitting algorithm

We require an algorithm to generate a best-fit temperature for
a set of occupations ρii of a set of energy eigenstates with
eigenvalues εi . We can write the Fermi–Dirac distribution in
a linearized form as

∣∣∣∣ln
(

1

f (ε; T )
− 1

)∣∣∣∣ = 1

kBT
|(ε − μ(T ))|, (A.1)

where for numerical convenience we have taken the absolute
values of both sides. Applying a similar transformation to our
eigenstate occupancy data (plotting |ln[(1/ρii ) − 1]| against
|εi − μ(T )|) allows us to use the standard tools of linear
regression to obtain an estimator for the inverse temperature4.
Because the chemical potential μ is a function of the fitted
temperature, our algorithm incorporates a self-consistency
loop. We first calculate an initial fitting temperature T1(μ0)

for an initial estimate of the chemical potential μ0. A new
chemical potential μ1(T1) can then be calculated and used to
obtain a revised estimate for the temperature T2(μ1). This
procedure is repeated until consecutive temperatures agree to
within a single degree. Because μ varies only slowly with
temperature, convergence is achieved very quickly (typically
within three iterations).

We have found that the nature of the electronic excitations
in our simulations is such that it is best to restrict the energy
range of the eigenvalues over which the fitting is carried out
(see figure A.1). Early in the simulation the presence of
high frequencies in the characteristic spectrum of the ionic
motion causes excitations across the full width of the electron
band. These excitations manifest themselves as deviations
from linearity in the linearized occupation data which remain

4 Problems with the divergence of the linearized occupancy at ρii = 0 and
ρii = 1 are avoided by restricting the range of fitted data, as discussed below.

Figure A.2. The behaviour and performance of the temperature
fitting algorithm for a set of forty-four 2 keV cascade simulations as
a function of simulation time. (Red) circles show the mean of the
distribution of R2 across all simulations at a particular time. The
error bars show the standard deviation and the (red) vertical crosses
indicate the maximum and minimum R2 within the set of
simulations. The (blue) diagonal crosses show how the value of the
parameter Omax for the optimum fit varies with time.

even when later excitations have generated a well established
thermal-looking distribution over a narrower energy range
about the Fermi energy. Except for very early in the simulation,
the non-linear tails represent a small and decreasing proportion
of the total electronic excitation and we choose to exclude them
from the regression analysis in order to avoid overestimating
the best-fit electronic temperature.

We begin by calculating a best-fit temperature for those
data which fall within an energy window |εi − μ(T )| < Emax

where we find that Emax = 0.2 eV provides enough data
to obtain a valid initial fit. We then gradually increase the
size of the energy window by increasing Emax, repeatedly
recalculating the best-fit temperature, up to a maximum width
corresponding to | f (Emax; T ) − 0.5| < Omax. The occupancy
bound Omax is chosen to admit as many data as possible into
the fitting window without incurring the risk that the non-linear
tails will corrupt the fit. In practice we have found that a
good value is Omax = 0.49. From the sequence of fitted
temperatures we then choose that for which the R2 measure
of goodness of fit was the highest.

For our set of simulations of 2 keV cascades we have
typically found that the optimum fitting range grows with
time so that by around 35 fs we are using the maximum
fitting window (see figure A.2). At earlier times, when the
temperature is lower, a smaller fitting window is preferred.
Typical values for R2 are 0.94–0.965 as shown in figure A.2.
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